Jour. Ind. Soc. Ag. Statistics Vol. XXXVII, No. 2 (1985), pp. 205-211

MULTI-TRIANGULAR SAMPLING PLANS FOR PARTIAL DIALLEL CROSSES

C. SUBBA RAO¹ and PREM NARAIN²

(Received : November, 1984)

SUMMARY

Partial diallel crosses based on multi-triangular design (MTD) have been constructed and analysed when the number of parental lines is of the form p(p-1) (p-2) (p-3)/24 with 'p' as an integer greater than 4. Designs based on multi-triangular association plans are more efficient than circulent designs of Kempthorne and Curnow.

Keywords : Partial Diallel Crosses; Multi-Triangular Design; Circular Design; Least Square Technique.

1. Introduction

The partial diallel crossing system was initially dealt by Kempthorne and Curnow [3] Fyfe and Gilbert [2] and Curnow [1]. Fyfe and Gilbert [2] constructed such crosses with the help of 'triangular' designs in which the number of lines could be of the form p(p-1)/2 where 'p' is an integer. Narain *et al.* [4] gave the procedures of constructing and analysing partial diallel crosses based on extended triangular design, where the number of parental lines is of the form p(p-1) (p-2)/6 with 'p' as an integer greater than 3. In the present investigation, partial diallel crosses based on multi-triangular design (MTD) have been constructed and analysed when the number of parental lines is of the form p(p-1)(p-2)(p-3)/24 with 'p' as an integer greater than 4.

1. Scientist S-1 (Statistics), All India Coordinated Rice Improvement Project, Rajendranagar, Hyderabad-500 030, A.P.

2. Director, IASRI, New Delhi-110 012.

2. Construction

Sampling plans for partial diallel crosses can be obtained in a manner similar to that of triangular designs of Fyfe and Gilbert (1963) and of the extended T design, of Narain *et al.* [4].

2.1 Multi-triangular Sampling Plans for Partial Diallel Crosses

Suppose the number of parents 'n' be of the form p_{c4} or [p (p-1) (p-2) (p-3)]/24 where 'p' is an integer. Denote a parent by quadruplet abcd where 'a' takes any value from 4 to p, 'b' takes from 3 to (a-1), 'c' takes from 2 to (b-1) and 'd' takes from 1 to (c-1). All the parents can be numbered of into (p-3) (p-2)/2 different triangles of different orders from 1 to (p-3). Number of parents in each triangle is given by $(p-1-j)c_2$ and the order of the triangle is given by (p-2-j), where $j = 1, 2, \ldots, (p-3)$. The number of parents

$$n = \sum_{j=1}^{p-3} j \times (p-1-j)c_2 = \frac{p(p-1)(p-2(p-3))}{24}$$

Illustration: Consider n = 126 and p = 9 so that $n = (9 \times 8 \times 7 \times 6)/24$. The triangles are obtained by decreasing the digits in order from right side onwards (Table 1).

Type of triangle		No. of quadruplets					
T_1	9876	9875	9874	9873	987 2	9871	
-		9865	9864	9863	9862	9861	
			9854	98 <u>5</u> 3	9852	9851	21
			,	9843	9842	984 1	
					9832	9831	
						9821	
T_{n}		9765	9764	9763	976 2	9761	
			9754	9753	9752	9751	15
				9743	974 2	9741	
					973 2	9 731	
						9721	
T.	•		9654	9653	965 2	9651	
				9643	9642	9641	10
					9632	9631	
						9621	
T.				9543	954 2	9541	

TABLE 1

Table 1 (contd. on page 207)

MULTI-TRIANGULAR PLANS FOR PDC

>

Table 1 (Contd. from page 206)

9		1	15	10	9	ю, П	10	و	ς	1	9	3	3	-
9531 9521	9431 9421	9321	8761 8751 8741 8731 8721	8651 8641 8631 8621	8541 8531 8521	8431 8421 8321	7651 7641 7631 7621		7431 7421	7321	6541 6531 6521	6431 6421 6321	5431 5421 5321	4321
9532	9432		866 2 8752 8742 8732	8652 8642 8632	8542 8532	8432	76 5 2 7642 7632	7541 7531 7521	7432		6542 6532	6432	5432	
			8763 8753 8743	8653 8643	8545		7653 7643	7542 7532	-		6543			
			8764 8754	8654			7654	7543				`		
			8765							,				
			r.				•	• •						
	-													
	T_{5}	T_6	T_2	T_3	T_4	T_5 T_6	T_3	T_{4}	T_{5}	$T_{\bf 6}$	Ta	T_{5} T_{6}	T_{5} T_{6}	T_{6}

-

v

٨

207

We obtain the triangle of different orders as shown in Table 2.

TABLE 2—NUMBERING OF THE PARENTS INTO TRIANGLES FOR CONSTRUCTION OF MTD WITH n = 126, p = 9

Type of triangle	Order of triangle	No. of quadruplets / within triangle	No. of triangles	No. of parents
(<i>jth</i>)	-	V		
T ₁	6 × 6	.21	1	21
T_2	5 × 5 ~	15	2	30
T ₃	4×4	10	3	30
T_4	3 × 3	6	4	24
T_5	2×2	3	5	15
T_{6}	1×1	1	. 6	6
				126

Imposing conditions on a, b, c and d of the quadruplets, we get four different designs.

 \bigvee Design I. We sample all the crosses of type $abcd \times efgh$, where a, b, c, d, e, f, g, h are all distinct. The number of times each parents is involved in crossing with other parents is given by

 $s_1 = (p-4)c_4$

The resulting sample would consist of $ns_1/2$ crosses.

 $\checkmark_{Design II.}$ We sample all the crosses of type $abcd \times efgh$, where one of the letters (a, b, c, d, e, f, g and h) is common. The number of times each parents is involved in crossing with other parents, denoted by s_2 is given by $s_2 = 4^{(p-4)}c_3$ and the resulting sample would consist of $ns_2/2$ crosses.

Design III. In this design, we sample all the crosses of type $abcd \times efgh$, where two of the letters are common. The number of times each parent is involved in crossing with other parents, s_3 , is given by $s_3 = 6 \times (p - 4)c_2$ and the resulting sample would consist of $ns_3/2$ crosses.

Design IV. In this design, we sample all the crosses of type $abcd \times efgh$, where three of the letters are common $s_4 = 4 (p - 4)$, sample = $ns_4/2$ crosses.

208

MULTI-TRIANGULAR PLANS FOR PDC

It can be shown that given the value of n, the number of parental lines, there can be only one value of 'p' satisfying

$$n = \frac{p(p-1)(p-2)(p-3)}{24}$$

This also fixes, then the value of 's' the number of times each line is involved in crosses with other lines. Table 3 illustrates some examples of n and p along/with the values of s for the four designs constructed above.

No. of parents	р		S	Design IV	
n		Design I Design II			
5	5		— .	—	4
15	б			6	8
35	7	<u> </u>	4	18	12
70	· 8 ·	1	16	36	16
126	9	5	40	60	20 ·
210	10	. 15	80	90	24
330	11	35	140	126	28

TABLE 3—NUMBER OF PARENTS AND NUMBER OF TIMES EACH PARENT INVOLVES IN CROSSING IN FOUR DESIGNS

3. Analysis

To analyse the partial diallel crosses constructed above the least square technique is used. We assume that only one set of F_1 crosses is considered. The mean yield of the cross between *i*th $\times j$ th parent is expressed as

 $\overline{Y}_{ij} = \mu + g_i + g_j + s_{ij} + e_{ij},$

where μ is the effect due to overall mean, g_i and g_j are the g.c.a. effects due to *i*th and *j*th parents respectively, s_{ij} is the s.c.a. effect due to the

cross $(i \times j)$ and e_{ij} is the random error. We assume that $\sum_{i=1}^{n} g_i = 0$,

 $\sum_{j=1}^{n} s_{ij} = 0$ for each *i* and that g_i , s_{ij} are independently normally distributed with zero means and variances 6_g^2 , 6_g^2 , 6_e^2 respectively. Let the observations and parameters be alternatively represented by the relation

$$Y = X\beta + e$$

where Y = a vector of observed yields of $(i \times j)$, X = the design matrix,

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

 $\beta = a$ vector of parameters. The least square estimates of the parameters are given by

$$\beta = (X'X)^{-1} X^1Y$$

A detailed description of procedures of the analysis is given by Subba Rao [5]. It is apparent from the description that the effect of a particular design of partial diallel crosses on the estimation of g c.a. effect and its S.E. would depend upon the elements of the inverse matrix A^{-1} . The elements of A and A^{-1} for n = 35 (with p = 7) and n = 15 (with p = 6) are presented in Table 4.

TABLE 4—THE ELEMENTS OF A AND A^{-1} FOR n = 35 AND n = 15FOR FOUR DESIGNS

Floments	Design I	Design II	Desig	n III	Design IV			
LACIACIUS	n = 35	n = 35	$\overline{n=15}$	n = 35	n = 15	n=35		
Diagonal		4 0.3714	6 0.1968	18 0.571	8 0.1335	12 0.0979		
abcd $ imes$ efgh								
abcd $ imes$ afgh		1 0.12 86		0 0.0000	<u> </u>	0 -0.0020		
abcd $ imes$ abgh		0 -0.0175	1 -0.0413	1 -0.0032	0 0.0003	0 0.0002		
$abcd \times abch$		0 0.0381	0 0.0064	0 0.0000	1 -0.0165	1 -0.0069		

The average variances of different designs for n = 15 and 35 were determined and are presented in Table 5.

Type of		s and average variance										
design	n	S	Av. Var.	S	Av. Var.	S	Av. Var.					
	15	6		8								
MTD			0.2109		0.1476							
K and C			0.2407		0.1545	•						
TD			0.2109		0.1500							
Factorial			0.2000		0.1468	,						
د آن MTD	35	4	0.7216	18	0.116 0.1174	12	0.185 0.1804					
K and C			2.1006 ₩		0.1214		0.2102					

TABLE 5-AVERAGE VARIANCES OF DIFFERENT DESIGNS

MTD: Multi-triangular design, K and C: Kempthorne and Curnow, TD: Triangular design. unudnall ky L - Finney

210

MULTI-TRIANGULAR PLANS FOR PDC

For n = 15 and different values of *s*, designs based on multi-triangular association plans are more efficient than circulent designs (C.D.) of Kempthorne and Curnow [3] and equally efficient that of Fyfe and Gilbert [2] and less efficient to factorial designs. For n = 35 and different values of *s*, multi-triangular designs are more efficient than C.D. of Kempthorne and Curnow [3] and equally efficient with that of ETD developed by Narain *et al.* [4]. Thus these sampling plans could be used as alternatives to the existing ones.

REFERENCES

- [1] Curnow, R. N. (1963) : Sampling the diallel crosses. Biometrics 19 : 287-306.
- [2] Fyfe, J. L., and Gilbert, N. E. G. (1963) : Partial diallel crosses, Biometrics 19 : 278-86.
- [3] Kempthorne, O., and Curnow, R. N. (1961) : The partial diallel crosses. *Biometrics* 17: 229-50.
- [4] Narain, P., Rao, C. Subba and Nigam, A. K. (1974) : Partial diallel crosses based on extended triangular association scheme *Indian J. Genet.* 34 : 309-17.
- [5] Rao, C. S. (1972) : Some aspects of partial diallel crosses unpublished P.G. Diploma *thesis*, IASRI, New Delhi.