MULTI-TRIANGULAR SAMPLING PLANS FOR PARTIAL DIALLEL CROSSES

C. SUBBA RAO ${ }^{1}$ and PREM NARAIN ${ }^{2}$

(Received : November, 1984)

Abstract

Summary

Partial diallel crosses based on muilti-triangular design (MTD) have been constructed and analysed when the number of parental lines is of the form $p(p-1)(p-2)(p-3) / 24$ with ' $^{\prime} p$ ' as an integer greater than 4 . Designs based on multi-triangular association plans are more efficient than circulent designs of Kempthorne and Curnow. Keywords : Partial Diallel Crosses; Multi-Triangular Design; Circular Design; Least Square Technique. 1. Introduction

The partial diallel crossing system was initially dealt by Kempthorne and Curnow [3] Fyfe and Gilbert [2] and Curnow [1]. Fyfe and Gilbert [2] constructed such crosses with the help of 'triangular' designs in which the number of lines could be of the form $-p(p-1) / 2$ where ' p ' is an integer. Narain et al. [4] gave the procedures of constructing and analysing partial diallel crosses based on extended triangular design, where the number of parental lines is of the form $p(p-1)(p-2) / 6$ with ' p ' as an integer greater than 3. In the present investigation, partial diallel crosses based on multi-triangular design (MTD) have been constructed and analysed when the number of parental lines is of the form $p(p-1)$ $(p-2)(p-3) / 24$ with ' p ' as an integer greater than 4.

[^0]
2. Construction

Sampling plans for partial diallel crosses can be obtained in a manner similar to that of triangular designs of Fyfe and Gilbert (1963) and of the extended T design, of Narain et al. [4].

2.1 Muiti-triangular Sampling Plans for Partial Diallel Crosses

Suppose the number of parents ' n ' be of the form $p_{c 4}$ or $[p(p-1)$ $(p-2)(p-3)] / 24$ where ' p ' is an integer. Denote a parent by quadruplet $a b c d$ where ' a ' takes any value from 4 to p, ' b ' takes from 3 to ($a-1$), ' c ' takes from 2 to $(b-1)$ and ' d ' takes from 1 to $(c-1)$. All the parents can be numbered of into $(p-3)(p-2) / 2$ different triangles of different orders from 1 to $(p-3)$. Number of parents in each triangle is given by $(p-1-j) c_{2}$ and the order of the triangle is given by $(p-2-j)$, where $j=1,2, \ldots,(p-3)$. The number of parents

$$
n=\sum_{j=1}^{p-3} j \times(p-1-j) c_{2}=\frac{p(p-1)(p-2(p-3)}{24}
$$

Illustration : Consider $n=126$ and $p=9$ so that $n=(9 \times 8 \times 7 \times 6) /$ 24. The triangles are obtained by decreasing the digits in order from right side onwards (Table 1).

TABLE 1

Type of triangle	Quadruplets						No. of quadruplets
T_{1}	9876	9875	9874	9873	9872	9871	
		9865	9864	9863 .	9862	9861	
			9854	9853	9852	9851	21
				9843	9842	9841	
					9832	9831	
						9821	
T		9765	9764	9763	9762	9761	
			9754	9753	9752	9751	15
				9743	9742	9741	
					9732	9731	
						9721	.
T_{3}			9654	9653	9652	9651	10
${ }_{2}$				9643	9642	9641	10
					9632	9631	
						9621	
T_{4}				9543	9542	9541	

Table 1 (contd. on page 207)

We obtain the triangle of different orders as shown in Table 2.
TABLE 2-NUMBERING OF THE PARENTS INTO TRIANGLES FOR CONSTRUCTION OF MTD WITH $n \doteq 126, p=9$

Type of triangle $($ jth) $)$	Order of triangle	No. of quadruplets within triangle	No. of triangles	No. of parents
T_{1}	6×6	21	1	21
T_{2}	5×5	15	2	30
T_{3}	4×4	10	3	30
T_{4}	3×3	6	4	24
T_{5}	2×2	3	5	15
T_{6}	1×1	1	6	6
			126	

Imposing conditions on a, b, c and d of the quadruplets, we get four diffêrent designs.

Design I. We sample all the crosses of type $a b c d \times e f g h$, where a, b, c, d, e, f, g, h are all distinct. The number of times each parents is involved in crossing with other parents is given by

$$
s_{1}={ }^{(\mathcal{D}-4)} c_{4}
$$

Thy resulting sample would consist of $n s_{1} / 2$ crosses.
Design II. We sample all the crosses of type $a b c d \times e f g h$, where one of the letters (a, b, c, d, e, f, g and h) is common. The number of times each parents is involved in crossing with other parents, denoted by s_{2} is given by $s_{2}=4^{(p-4)} c_{3}$ and the resulting sample would consist of $n s_{2} / 2$ crosses.

Design III. In this design, we sample all the crosses of type abcd \times efgh, - where two of the letters are common. The number of times each parent is involved in crossing with other parents, s_{3}, is given by $s_{3}=6 \times$ ($p-4$) c_{2} and the resulting sample would consist of $n s_{3} / 2$ crosses.
Design IV. In this design, we sample all the crosses of type abcd \times efgh, where three of the letters are common $s_{4}=4(p-4)$, sample $=$ $n s_{4} / 2$ crosses.

It can be shown that given the value of n, the number of parental lines, there can be only one value of ' p ' satisfying

$$
n=\frac{p(p-1)(p-2)(p-3)}{24}
$$

This also fixes; then the value of ' s ' the number of times each line is involved in crosses with other lines. Table 3 illustrates some examples of n and p along/with the values of s for the four designs constructed above.

TABLE $3-$ NUMBER OF PARENTS AND NUMBER OF TIMES EACH PARENT INVOLVES IN CROSSING IN FOUR DESIGNS

No. of parents n	p						s			
		Design I	Design II	Design III	DesignIV					
5	5	-	-	-	4					
15	6	-	-	6	8					
35	7	-	4	18	12					
70	8	1	16	36	16					
126	9	5	40	60	20					
210	10	15	80	90	24					
330	11	35	140	126	28					

3. Analysis

To analyse the partial diallel crosses constructed above the least square technique is used. We assume that only one set of F_{1} crosses is considered. The mean yield of the cross between i th $\times j$ th parent is expressed as

$$
\bar{Y}_{i j}=\mu+g_{i}+g_{j}+s_{i j}+e_{i j},
$$

where μ is the effect due to overall mean, g_{i} and g_{j} are the g.c.a. effects due to i th and j th parents respectively, $s_{i j}$ is the s.c.a. effect due to the cross $(i \times j)$ and $e_{i j}$ is the random error. We assume that $\sum_{i=1}^{n} g_{i}=0$, $\sum_{j=1}^{n} s_{i 1}=0$ for each i and that g_{i}, $s_{i j}$ are independently normally distributed with zero means and variances. $6_{g}^{2}, 6_{\varepsilon}^{2}, 6_{e}^{2}$ respectively. Let the observations and parameters be alternatively represented by the relation.

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+e
$$

where $\boldsymbol{Y}=$ a vector of observed yields of $(i \times j), \boldsymbol{X}=$ the design matrix,
$\beta=$ a vector of parameters. The least square estimates of the parameters are given by

$$
\beta=\left(X^{\prime} X\right)^{-1} X^{2} Y
$$

A detailed description of procedures of the analysis is given by Subba Rao [5]. It is apparent from the description that the effect of a particular design of partial diallel crosses on the estimation of g c.a. effect and its S.E. would depend upon the elements of the inverse matrix A^{-1}. The elements of A and A^{-1} for $n=35$ (with $p=7$) and $n=15$ (with $p=6$) are presented in Table 4.

TABLE 4-THE ELEMENTS OF A AND A^{-1} FOR $n=35$ AND $n=15$ FOR FOUR DESIGNS

Elements	Design I$n=35$	Design II$n=35$	Design III		Design IV	
			$n=15$	$n=35$	$n=15$	$n=35$
Diagonal	- -	$4 \quad 0.3714$	$6 \quad 0.1968$	180.571	8. 0.1335	120.0979
$a b c d \times e f g h$	- -	- -	- -	- -	- -	- -
abcd \times afgh	- -	1-0.1286	- -	$0 \quad 0.0000$	- -	0-0.0020
$a b c d \times a b g h$	- -	0-0.0175	$1-0.0413$	1-0.0032	$0 \quad 0.0003$	$0 \quad 0.0002$
$a b c d \times a b c h$	- -	$0 \quad 0.0381$	$0 \quad 0.0064$	$0 \quad 0.0000$	1-0.016	1-0.0069

The average variances of different designs for $n=15$ and 35 were determined and are presented in Table 5.

TABLE 5-AVERAGE VARIANCES OF DIFFERENT DESIGNS

Type of design	s and average variance						
	n	s	Av. Var.	S	Av. Var.	s	Av. Var.
	15	6		8			
MTD			0.2109		0.1476		
K and C			0.2407		0.1545		
TD			0.2109		0.1500		
Factorial			0.2000		0.1468		
$\begin{aligned} & E D \\ & M T D \end{aligned}$	35	4	ol725 0.7216	18	$\begin{aligned} & 0.116 \\ & 0.1174 \end{aligned}$	12	$\begin{aligned} & 0.185 \\ & 0.1804 \end{aligned}$
K and C			2.1006		0.1214		0.2102

MTD : Multi-triangular design, K and $\mathrm{C}:$ Kempthorne and Curnow, TD : Triangular design.

$$
\text { unutiad } k y=\text { Fronect }
$$

For $n=15$ and different values of s, designs based on multi-triangular association plans are more efficient than circulent designs (C.D.) of Kempthorne and Curnow [3] and equally efficient that of Fyfe and Gilbert [2] and less efficient to factorial designs. For $n=35$ and different values of s, multi-triangular designs are more efficient than C.D. of Kempthorne and Curnow [3] and equally efficient with that of ETD developed by Narain et al. [4]. Thus these sampling plans could be used as alternatives to the existing ones.

REFERENCES

[1] Curnow, R. N. (1963) : Sampling the diallel crosses. Biometrics 19: 287-306.
[2] Fyfe, J. L., and Gilbert, N. E. G. (1963) : Partial diallel crosses, Biometrics 19 : 278-86.
[3] Kempthorne, O., and Curnow, R. N. (1961) : The partial diallel crosses. Biometrics 17 : 229-50.
[4] Narain, P., Rao, C. Subba and Nigam, A. K. (1974) : Partial diallel crosses based on extended triangular association scheme Indian J. Genet. 34: 309-17.
[5] Rao, C. S. (1972) : Some aspects of partial diallel crosses unpublished P.G. Diploma thesis, IASRI, New Delhi.

[^0]: 1. Scientist S-1 (Statistics), All India Coordinated Rice Improvement Project, -...Rajendranagar, Hyderabad-500 030, A.P.
 2. Director, IASRI, New Delhi-110 012.
